All resources on this site are high-quality and available for download.
X_train:训练数据矩阵,大小为[N×D],N为样本数,D为特征维度y_train:训练标签向量,大小为[N×1],包含整数类别标签(如1, 2, ...)X_test:测试数据矩阵,大小为[M×D],M为测试样本数sigma:高斯核函数带宽参数,控制核函数的平滑程度projected_train:降维后的训练数据,大小为[N×K],K为选择的特征维数(通常K ≤ C-1,C为类别数)projected_test:降维后的测试数据,大小为[M×K]accuracy:测试集在降维空间中的分类准确率eigenvectors:判别方向对应的特征向量矩阵% 执行KFDA [projected_train, projected_test, accuracy, eigenvectors] = main(X_train, y_train, X_test, sigma);